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Abstract  

A renormalization of the p-propagator is presented. It is shown that if the p-wave, iso- 
vector ~r-n amplitude is assumed to be dominated by this renormalized p, many scattering 
parameters are predicted that agree well with experimental data. The model is compared 
with one presented by Tschang and Parkinson. It is shown that the predictions of the two 
models are the same, but that the renormalization model does not contain some of the 
theoretical problems of the Tschang and Parkinson scheme. 

1. Introduction 

In 1967, Ball and Parkinson (Ball and Parkinson, 1967) in t roduced a para- 
metrized model  of  the p-meson. The model  t reated the rr-rr ampli tude as a sum 
of  contr ibut ions from several two-particle channels. However, this model  re- 
quired the use o f  a numerical cut-off  to prevent various integrals from diverg- 
ing, and the formalism could not  handle scattering channels o f  total  angular 
moment  greater than one. 

In 1971, Tschang and Parkinson (hereafter referred to as TP) (Tschang and 
Parkinson, 1971) extended the original model,  eliminating the restrictions 
described above. They obtained a parametrized model  of  the p by fitting their 
model  to low energy zr4r phase shift data (Baton, Laurens, and Reignier, 1970). 

In this paper,  I present a model  of  the p-meson propagator obtained by  a 
straightforward renormalization technique. The predict ions of  this renormaliza- 
t ion model  are compared with those o f  the TP model  and experimental  data. 

In Section 2, the TP model  is considered. Section 3 deals with the renormal.  
ization model. The predictions of  the p-wave, isovector phase shifts of  the two 
schemes are discussed in these sections. Section 4 is a br ief  discussion of  the 
predictions of  the pion form factor and p-wave scattering length o f  these 
models. 
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2. The Tschang-Parkinson Model 

Using the K-matrix formalism, TP have parametrized the rr-rr scattering 
amplitude in the l = 1, isovector channel as 

g2 
r ~ ( s )  = s s (2.1) 

s - m 2 + ~ Ci z V](s) + i ~ c j Z p j ( s ) O ( s  - tj) 
j=l i=1 

where m is the resonance mass (mo) and the function pj(s) is the phase space 
function for the fth channel contribution to rr-Tr scattering. Vj(s) is the real 
part of  a dispersion integral for the jth channel, and is given in the appendix 
of TP. The number t i is the threshold energy in the appropriate channel, and 
in terms of the particle masses, is 

0 = [mj(1) + m/(2)] z (2.2) 

Also occurring in the phase space function is the threshold 

uj = [mj(1) - mi(2)] 2 (2.3) 

The coefficients Cj 2 were adjusted to give the best fit to the tow energy 
rr.~r phase shift data. Table 1 is a reproduction of the table in TP giving the 
appropriate quantities in equation (2.1). In Table 1 and throughout this paper, 
/a will be used as the pion mass. 

The phase shifts are defined by 

tan 8 (s) = - I m  D(s)/Re D(s) (2.4) 

where D(s) is the denominator of equation (2.1). 
As can be seen from the threshold values in Table 1, only the ~r-rr channel 

contributes to the imaginary part of  D(s) for almost the entire range of energy 
considered. The real part of D(s) is not particularly sensitive to the contribu- 
tions from the various channels at low energies. Thus, the 7r-Tr channel should 

TABLE 1. Values of parameters and phase space functions required by TP model to fit 
phase shift data 

Channel 
number Particles tj/l~ 2 ufft~ z Cj 2 pf(s) 

1 rrTr 4 0 .99 ( s -  t l)3/2(16s) -1/2 
2 7rco 43.7 21.2 .19 

3 P~7 88.4 2.37 .063 [ ( s -  t i ) ( s -  u])] 3/2 
16s 

4 K*K 98.8 7.9 .19 
5 N.N(+-)* 180.6 0 7.72 [s ( s -  ts)/4] 1/2 

* (+-) are the helicities of the nucleons. 
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be sufficient to describe the phase shift data almost completely. Since the 
threshold for the ~r-~) channel is 930 MeV (t2/~ 2 = 43.7) the rr-co channel 
should affect the phase shift predictions of  the TP model only above 930 
MeV. None of the other channels should have any effect. A simple numerical 
investigation confirms this. 

The phase shift predictions of equation (2.1) were tested to see what effect 
various changes in D(s) would have on these predictions. As expected, I found 
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Figure 1 -Pred ic t ions  o f  the n - n  isovector phase shifts for the full 5-channel TP model, 
single n-~r channel  TP model,  and exper imental  data. 

that if  all but the rr-rr channel are omitted, the phase shift values do not change 
much from the predictions when all five channels are included. As would be 
expected, the only noticable change occurs at higher energies. This is illustrated 
in Figure I, where the phase shift curve is plotted for the case when all five 
channels are included in D(s), and when the denominator contains only the 
n4r channel contributions. When the n-co channel is included with the Ir-Tr 
channel, the phase shift predictions are identical to the five channel case. It is 
found that omitting or including any of the other three channels (p% K*K', 
N27) makes no change in any of the two channel predictions. Thus, the 7r-rr 
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and rr-¢o channels are the entire contributors to the phase shift predictions of 
the TP model up to energies ~1100 MeV. 

It  had been pointed out by Ball and Parkinson (Ball and Parkinson, 1967) 
that the NJVchannel is the most important contribution to the creation of the 
p. Since omission or inclusion of this channel has no effect on the rr-rr data, 
such a conclusion seems to be incorrect. 

I have also looked at the denominator of equation (2.1) for negative s. I 
find a pole in Tmr at s = -107.66/~ 2. The left hand cut in the TP model has 
been approximated by a pair of complex conjugate poles. If the pole positions 
are defined to be at s = x  +- iy,  TP find that -5/~ 2 < x  < 0 and 20/~ 2 < y  < 
25/~ 2. Thus, the pole at s = -107.66/22 does not come from the left hand cut. 
Further investigation as to its origin is in order. 

3. R enormalizat ion Mode l  

In this Section, I describe a renormalization technique for the p propagator. 
Only the two pion contribution is considered, so the results will be compared 
to the TP predictions containing just the rr-rr channel. 

The renormalized p propagator is taken to be a bare propagator adjusted by 
a sum of two-pion bubbles. The renormalized propagator will be represented 
diagramatically by 

Duv(s) = ~ (3. la) 

and the bare propagator by 

D % ( s )  = ~ (3.1b) 

The equation for the renormalized propagator, to lowest order in the prrrr 
coupling constant, is (Taylor, 1963; Buchl and Nigam, 1972) 

= " " ~  + ~ + ' ~ ' ~ " " 0 ~  + . . .  
(3.2) 

= ~v,,,,.,, + ~ 

I am approximating the parr vertex by a constant, and assuming that for low 
energies, it is sufficient to keep only those terms which are to lowest order 
in this coupling constant. 

Analytically, 

D°v(s)  =- [&v - p , p ~ / s ] ( s  - mo 2 + ie) -1 (3.3) 

where s = p2 is the off-shell 4-momentum squared, and m o is the bare p mass. 
Since s v~ m02 off the mass shell, the propagator in equation (3.3) is a pure 
p-wave propagator. This form is necessary to yield a pure p-wave p when re- 
normalized. To see that the bare propagator in equation (3.3) is pure p-wave, 
consider the inner product. 

0 P t 
qlaD~u(s)qv ~ ql~ (g.u - Pt~Pv/s)q v (3.4) 
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In the "rest frame" of  the off-shell p, Pu = (Po, 0). Thus 
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0 t quDuvqv  ~ - q .  q' ~ cos 0 

I f  the tensor term in equation (3.3) were p u p v / m o  2, o , quDuvqv  would contain 
a term which was independent of  cos 0 in addition to a cos 0 term. This would 
represent a particle with mixed s and p wave components. 

In equations (3.1a) and (3.2), let Duv ==-Aguv + B p u p v ,  and define the two- 
pion bubble as 

==- Iluv =- I l g v v  + I 2 p u p v  

Then equation (3.2) becomes 

This yields 

and 

D u v  = D ° v  o + Du~  I I ~ D a v  

A = (s - m o  2 - I t ( s ) )  -1 

B = - [s(s - mo2  - I i(s))]  -1 

Using the bare Lagrangian 

(3.5) 

(3.6a) 

(3.6b) 

L = goP~. (4~x OJ)) 

one finds 

Iluv = I l g u v  + I 2 p u P v  = 

igo2(27r) -4 fd4k(p - 2 k ) u ( p  - 2 k ) v ( k  2 - u2) -1 [(p - k) :  - u 2 ] -1 

(3.6c) 

/a and v being the Lorentz indices associated with the incoming and outgoing 
p fields. There is a factor 2 from the isospin contribution to the two-pion 
bubble which is cancelled by 1/2! a symmetry factor. 

To evaluate Iluv, note that the projection operator 

[guy - P u p v / s ] / 3  

projects out  the & v  part of  any two index quantity. Thus 

11 = ~[guv - P#Pv/s] lquv 

Similarly 
1 

12 = -- ~s [ggv - 4 p u p f f s ]  I luv 
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In addition to these projection operators, the following identities are also use- 
ful (see, for example, Schweber, 1961) 

[ (p  --  k ) 2  _ / . / 2 ] - t  = ( k  2 _ / ~ / 2 ) - t  _ (/t92 _ 2p. k)(k z - U2) -1 [(p - k) 2 - /~2]  -1 

(3.7a) 

f d4kkukv f ( k2 )  = ¼guy f dgkk2f(k2)  (3.7b) 

f d4kkukvkakcrf(k 2) = 1 ~ [guvgxa + guxgvo + gucrgvx] f d4k(kZ)2 f ( k  2) 

(3.7c) 

and 

f d 4 k  (odd number of  k 4-vectors)f(k 2) = 0 

Defining the quadratically, and logarithmically divergent quantities 

a o  - f a* (k 2 - + Lo  =- f a 4 k ( k  2 - + -1 

I obtain 

I1 = igoZ(27r) -4 [Qo + 0 z2 - s/3)Lo - izrZs(1/6 + s/(3U2)) 

and 

(3.7d) 

(3.8) 

_ 4 f d4k(s _ 2p. k) 3 {k 2 - (p. k)Z/s}(k 2 - ~2 + i e ) - 4  {(t9 _ k ) 2  _ 

- U  2 + ie }-X] = igo2(27r)-4 [Q o + (l.t 2 - s/3)L o + Fl(s)]  (3.9) 

12 =/go2(2zr) -4 [Lo/3 + F2(s)] 

The functions F1(s ) and F2(s) are finite. As can be seen from equations (3.6a) 
and (3.6b), 12, and therefore F 2 does not contribute to the renormalized 
propagator. It is, therefore, unnecessary to discuss F 2. 

The integral in F I (s) can be evaluated using the Feynman identity 

1 
(abn) -1 = n f dx(1 - x)  n [ax + b(1 - x ) ]  - n - 1  

o 

Referring to equations (3.6a) and (3.6b), the mass renormalization is 
achieved by setting 

mo 2 + / l ( S )  = m 2 + 6m 2 + [t1(s) - II(m2)] + R e l l ( m  2) + i I m t l ( m  2) 

and letting 3m 2 + R e l l ( m  2) = 0. Then 

mo 2 +t l ( s  ) = m 2 + Re [Ii(s) - I1(m2)] + i I m l l ( s  ) (3.10) 
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By making a Wick rotation, it is easily seen that (20 and L o are purely 
imaginary. Thus, from equation (3.9) 

Im 11 (s) = go 2 (2n)-4 Re [Qo + (p2 _ s/3)L o + FI  ] = go g (2Ir)-4 Re F 1 (s) 

(3.11) 

It is also noted that Re [Ii(s) - t l(na2)] does not contain the quadratically 
divergent term. That is, mass renormalization removes the quadratic divergences. 

To remove the logarithmic divergences, the coupling constant is renormalized 
by multiplication by a renormalization constant Z. The two-pion amplitude is 
assumed to be dominated by the p in the energy region under investigation. 
This is written diagramatically as 

l # 

P l ~ P l  P l ~ P l  (3.12) 
p z ~ _ _ p  ~ - p g ~  , -p~ 

which represents the expression 

T ~  -~gog(pl - pg)uDuv[ (p l  + Pg)g] (P'I - P2)v (3.13) 

The coupling constant is renormalized by writing 

Tzrn ~ (Zgog)(Pl - P2)~zZ-1Dtsv[(Pt + P2) 2 ] ( /3 ;  --  Pl)v (3.14) 

and defining the renormalized coupling constant by 

g2 = Zg  0 2 (3.15) 

Referring to equations (3.6a), (3.6b), and (3.10), Z-1Duv will contain the 
factor 

Z -1 [ s -  na g - Re zZ( 1 - i Im Ii(s)]  -1 (3.16) 

where AI~ = I i ( s  ) - I i(na2).  
A simple pole at the p mass is insured by requiring 

lim Z [ s -  m s - Re A / 1 ] - + s -  m 2 

o r  

Z =  [1  - Re dllldsls=mq -~ (3.17) 

Define a function A(s) so that 

Z[s  - rn 2 -- Re , 5 I  I - i l m l i ( s ) ]  = s - m 2 + A(s) (3.18) 

Then, using equation (3.17), 

A(s) = Z [ ( s -  nag) Re dI1/ds  lm ~ - Re A/1 - i lm I1(s)l (3.19) 

As seen in equation (3.9), 11 contains the overall multiplicative factor go 2. 
Thus, every term in A(s) contains the factor (Zgo 2) = gg. Therefore, 

A(s) = [(s - m 2) RedI1/dslm~ -- Re A/1 - i l m I l ( s ) ] g o ~ g ~  (3.20) 
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From equations (3.9) and (3.11), I obtain 

Re A(s) = - ( s  - m 2) Img2(27r) -4 [F' l(m 2) - (F 1 (s) - -  f l ( m 2 ) ) / ( s  - -  m 2 ) ]  

(3.21a) 
and 

Im A(s) = _g2(27r)-4 Re F 1 (s) (3.21 b) 

Thus, A is finite. Therefore, so are the functions A and B of equations (3.6a) 
and (3.6b). The renormalized propagator is 

Duv(s) = [gu~' - PuP~'/s] (s - rn 2 + A(s)) -1 (3.22) 

Using this to describe the approximate isovector, p-wave amplitude, the phase 
shifts are found from 

tan 6 = - ImA(s)[s  - m 2 + Re A(s)] -1 (3.23) 

An evaluation of F 1 (s) yields 

Im A(s) = gZ(487r)-I (s - 4ta2)3/2(s)-1/2®(s - 4U 2) (3.24a) 

and 

Re A(s) = g2(3rr2)-l (s - m 2) {(1/4 + 1~2/m2)q m 2 WR (m 2) + qm 2 W R (m2)u2 /m2  

- [Sqs 4 WR (S) -- m2qm 4 WR (rn2)]/(s - m 2)} (3.24b) 

where q~ = (s - 4/22)/(4s), qm 2 = q2s-_m2, W'R(S) = dWR/dqs  2, and 

1 

WR(S ) =P f dY(., v2 - 4 q s 2 )  -1 = 

-1 

1 
- .  ,iqsl arctan [(2lqsl)  -1] qs 2 < 0  

1 
- -  log [(1 - 2qs)/(1 + 2qs) ] qs 2 > 0 
2qs 

(3.25) 

Since the imaginary part of A is positive, the pole at the P mass is on a higher 
sheet. 

In Table 2, I have listed some selected values of the phase shift as predicted 
by the rip model with only the 7r-rr channel included, and those predicted by 
this approximate renormalized amplitude. As can be seen, there is virtually no 
difference between the predictions of the two models. As with the 7r-rr predic- 
tions of the TP model, the best results are obtained from the renormalization 
approach with Pp -~ 150 MeV. 

I have also investigated the negative s region of the renormalized amplitude, 
and find the denominator of equation (3.22) to be negative definite. Thus, the 
renormalized amplitude has no ghost poles. Note also, that in the renormalized 
approach, there are only two input parameters, the p mass and width. Also, in 
this approach, the rr-rr channel is essentially exclusively responsible for the 
creation of  the p. 
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Table 2. Comparison of representative 7rTr phase shift predictions of TP model with the 
7r-rr channel only, renormalization approach, and experimental data. All angles axe in 
degrees. 

Renormalization 
approach 

s/t~ 2 TP predictions predictions Experimental data 

12.8 6.0 6.4 8.1 +- 5.2 
18.2 14.8 15.6 17,4 +- 3.4 
24.9 42.9 44.0 42.2 +- 5.0 
32.6 ii1.1 110.6 109.6 +- 8.4 
41.1 141.8 141.4 141A +- 4.1 
50.6 t51.6 151.6 148.7 +_ 4.1 
6t.1 t56.0 156.4 151.8 +_ 5.6 
72.9 158.4 159.2 I66.9 +- 7.6 

4. Form Factors and Scattering Lengths 

A comparison of the pion form factor predictions of the two models, yield 
essentially identical results, as they must. Both show reasonable agreement 
with experiment (Augustin et al., 1968; Auslander et al., 1968; Gounaris, 1969; 
Parkinson, 1970). 

Writing T ~ ( s )  "~ D-l(s) ,  the form factor is 

F~(s) = D(O)/D(s) (4.1) 

These results are displayed by Parkinson (Parkinson, 1970). The best fits to 
the form factor data in both models occur for m o = 770MeV, Up = 109 MeV. 
This is in contrast to the 150 MeV width needed for good phase shift predic- 
tions (see footnote 1). 

Tryon has shown (Tryon, 1971) that the p-wave scattering length can be 
accurately related to the p-wave phase shift by 

611 = a l ( S _  4~2)3/2(16S)-1/2 (4.2) 

The values of a I predicted by the two models, along with experimental results 
(which were deduced by Tryon from Ke 4 data) are given in Table 3. 

1 In performing the computations of the form factor and scattering length from the TP 
model, C 12 was adjusted for the various p widths quoted, by setting 

Im D(s)Is=m s = -m#rp  

D(s) being given in equation (2.1). 
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Table 3. Comparison of TP and renormalization model predictions of p-wave scattering 
length (al# 2) to experimental data. 

TP predictions 
Pp -~ 140 MeV 

Renormalization 
model predictions 

Pp -~ 140 MeV Experimental data (Tryon, 1971) 

.039 .040 .037 -+ .003 (Beier et al., 1973) 
.042 -+ .006 (Zylbersztejn et aL, 1972) 

.007 (Schweinberger et aL, 1971) .037 _ + .010 

.045 + .005 (Ely et aI., 1969) 

5. Conclusions 

I have considered two models of  the/9 meson and the approximate low 
energy 7r-Tr amplitude which can be obtained from them. Both approaches 
make essentially the same predictions of  various scattering parameters which 
are in reasonable agreement with experimental data. The Tschang-Parkinson 
model, which is parametrized by a fit to 7r-lr phase shift data, seems to contain 
ghosts. It also contains parameters which are adjusted by fitting the phase 
shift data. The renormalized amplitude requires only the p mass and width to 
completely specify it, and it does not have the negative energy pole which seems 
to be present in the TP model. 
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